【例1】有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形会是( )。
解析:根据正方体的表面展开图共有11种情况,本题中“M”是底面,如果沿图中粗线将其剪开展成平面图形,四个小正方形会连在一起,并且标有“M”底面
应和最边上的一个小正方形连在一起,可由此进行选择。
解答:B
【例2】一种无盖的长方体玻璃鱼缸,它的长和宽都是40厘米,高是20厘米,做2个这样的鱼缸,至少要多少平方厘米的玻璃?
解析:根据题意可知,如果把两个鱼缸‘口口’对接,就可变成一个棱长是40厘米的正方体(如下图),这样一来只要求出它的表面积即可知道做这两个鱼缸一共需要多少玻璃。
解答:40×40×6=9600(平方厘米)
答:至少需要9600平方厘米玻璃。
【例3】如下图,有一块长40厘米、宽20厘米的长方形铁皮,在铁皮的四个角上分别剪去一个边长是5厘米的小正方形,做一个深5厘米的长方体无盖铁盒。这个铁盒的容积是多少立方厘米?
解析:根据题意可知,这样做成的长方体铁盒的长是用长方形铁皮的长减去两个小正方形的边长,即40-5×2=30(厘米),宽是用长方形铁皮的宽减去两个小正方形的边长,即20-5×2=10(厘米),高就是小正方形的边长5厘米,因此,此时焊接成的长方体铁盒的容积是30×10×5=1500(立方厘米)。
解答:
40-5×2=30(厘米)
20-5×2=10(厘米)
30×10×5=1500(立方厘米)
答:这个铁盒的容积是1500立方厘米。
【例4】一个长方体,如果高增加2厘米,就变成一个正方体,这时表面积比原来增加56平方厘米,原来长方体的体积是多少立方厘米?
解析:根据题意,可以作出下图。表面积比原来的长方体增加了56平方厘米,从图中可看出,高增加了2厘米,使长方体变成了正方体,而增加的面积只是四周4个面的面积,跟顶面和底面无关,所以只要将56÷4=14(平方厘米)就可以求出增加的四个面中的其中一个面的面积。这个增加的面是个长方形,而这个长方形的宽就是增加的2厘米,因此,只要把求出的这个长方形的面积除以宽,就可算出长方形的长,也就是:14÷2=7(厘米)。而这个长方形的长,也就是增加后的正方体每条边的棱长。由于原长方体的高比现在的正方体的棱短2厘米,所以原长方体的高就是7-2=5(厘米)。算出了原长方体的长,根据题意,原长方体的底面为正方形,因此,原来长方体的底面的长和宽相等,都是7厘米,所以这个长方体的体积是7×7×5=245(立方厘米)。
解答:
56÷4=14(平方厘米)
14÷2=7(厘米)
7-2=5(厘米)
7×7×5=245(立方厘米)
答:原来长方体的体积是245立方厘米。
如需下载完整版可以扫描下方二维码即可免费获取2021年苏教版六年级上册第一单元长方体和正方体试题解析电子版↓↓↓
还没有人评论哦,赶紧抢一个沙发吧!